Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Microbiol Res ; 283: 127712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593580

RESUMO

Lipid A plays a crucial role in Vibrio parahaemolyticus. Previously we have reported the diversity of secondary acylation of lipid A in V. parahaemolyticus and four V. parahaemolyticus genes VP_RS08405, VP_RS01045, VP_RS12170, and VP_RS00880 exhibiting homology to the secondary acyltransferases in Escherichia coli. In this study, the gene VP_RS12170 was identified as a specific lipid A secondary hydroxy-acyltransferase responsible for transferring a 3-hydroxymyristate to the 2'-position of lipid A. Four E. coli mutant strains WHL00, WHM00, WH300, and WH001 were constructed, and they would synthesize lipid A with different structures due to the absence of genes encoding lipid A secondary acyltransferases or Kdo transferase. Then V. parahaemolyticus VP_RS12170 was overexpressed in W3110, WHL00, WHM00, WH300, and WH001, and lipid A was isolated from these strains and analyzed by using thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. The detailed structural changes of lipid A in these mutant strains with and without VP_RS12170 overexpression were compared and conclude that VP_RS12170 can specifically transfer a 3-hydroxymyristate to the 2'-position of lipid A. This study also demonstrated that the function of VP_RS12170 is Kdo-dependent and its favorite substrate is Kdo-lipid IVA. These findings give us better understanding the biosynthetic pathway and the structural diversity of V. parahaemolyticus lipid A.


Assuntos
Lipídeo A , Vibrio parahaemolyticus , Lipídeo A/química , Lipídeo A/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Espectrometria de Massas
2.
Water Res ; 254: 121379, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422694

RESUMO

UV degradation of marine microplastics (MPs) could increase their vector potential for pathogenic bacteria and threaten human health. However, little is known about how the degree of UV aging affects interactions between MPs and pathogens and how various types of MPs differ in their impact on seafood safety. This study investigated five types of UV-aged MPs and their impact on Vibrio parahaemolyticus, a seafood pathogen. MPs exposed to UV for 60 days showed similar physicochemical changes such as surface cracking and hydrophobicity reduction. Regardless of the type, longer UV exposure of MPs resulted in more biofilm formation on the surface under the same conditions. V. parahaemolyticus types that formed biofilms on the MP surface showed 1.4- to 5.0-fold upregulation of virulence-related genes compared to those that did not form biofilms, independently of UV exposure. However, longer UV exposure increased resistance of V. parahaemolyticus on MPs to chlorine, heat, and human gastrointestinal environment. This study implies that the more UV degradation occurs on MPs, the more microbial biofilm formation is induced, which can significantly increase virulence and environmental resistance of bacteria regardless of the type of MP.


Assuntos
Vibrio parahaemolyticus , Humanos , Idoso , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Microplásticos , Plásticos , Alimentos Marinhos/microbiologia , Biofilmes , Bactérias
3.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338671

RESUMO

Vibrio parahaemolyticus is the primary foodborne pathogen known to cause gastrointestinal infections in humans. Nevertheless, the molecular mechanisms of V. parahaemolyticus pathogenicity are not fully understood. Prophages carry virulence and antibiotic resistance genes commonly found in Vibrio populations, and they facilitate the spread of virulence and the emergence of pathogenic Vibrio strains. In this study, we characterized three such genes, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055, within the largest prophage gene cluster in V. parahaemolyticus CHN25. The deletion mutants ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 were derived with homologous recombination, and the complementary mutants ΔVpaChn25_0713-com, ΔVpaChn25_0714-com, ΔVpaChn25_RS25055-com, ΔVpaChn25_RS25055-0713-0714-com were also constructed. In the absence of the VpaChn25_RS25055, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055-0713-0714 genes, the mutants showed significant reductions in low-temperature survivability and biofilm formation (p < 0.001). The ΔVpaChn25_0713, ΔVpaChn25_RS25055, and ΔVpaChn25_RS25055-0713-0714 mutants were also significantly defective in swimming motility (p < 0.001). In the Caco-2 model, the above four mutants attenuated the cytotoxic effects of V. parahaemolyticus CHN25 on human intestinal epithelial cells (p < 0.01), especially the ΔVpaChn25_RS25055 and ΔVpaChn25_RS25055-0713-0714 mutants. Transcriptomic analysis showed that 15, 14, 8, and 11 metabolic pathways were changed in the ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 mutants, respectively. We labeled the VpaChn25_RS25055 gene with superfolder green fluorescent protein (sfGFP) and found it localized at both poles of the bacteria cell. In addition, we analyzed the evolutionary origins of the above genes. In summary, the prophage genes VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055 enhance V. parahaemolyticus CHN25's survival in the environment and host. Our work improves the comprehension of the synergy between prophage-associated genes and the evolutionary process of V. parahaemolyticus.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/metabolismo , Prófagos/genética , Células CACO-2 , Virulência/genética , Família Multigênica , Vibrioses/microbiologia
4.
Biometals ; 37(2): 507-517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133869

RESUMO

Siderophores are small-molecule iron chelators produced by many microorganisms that capture and uptake iron from the natural environment and host. Their biosynthesis in microorganisms is generally performed using non-ribosomal peptide synthetase (NRPS) or NRPS-independent siderophore (NIS) enzymes. Vibrio parahaemolyticus secretes its cognate siderophore vibrioferrin under iron-starvation conditions. Vibrioferrin is a dehydrated condensate composed of α-ketoglutarate, L-alanine, aminoethanol, and citrate, and pvsA (the gene encoding the ATP-grasp enzyme), pvsB (the gene encoding the NIS enzyme), pvsD (the gene encoding the NIS enzyme), and pvsE (the gene encoding decarboxylase) are engaged in its biosynthesis. Here, we elucidated the biosynthetic pathway of vibrioferrin through in vitro enzymatic reactions using recombinant PvsA, PvsB, PvsD, and PvsE proteins. We also found that PvsD condenses L-serine and citrate to generate O-citrylserine, and that PvsE decarboxylates O-citrylserine to form O-citrylaminoethanol. In addition, we showed that O-citrylaminoethanol is converted to alanyl-O-citrylaminoethanol by amidification with L-Ala by PvsA and that alanyl-O-citrylaminoethanol is then converted to vibrioferrin by amidification with α-ketoglutarate by PvsB.


Assuntos
Pirrolidinonas , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/metabolismo , Vias Biossintéticas , Ácidos Cetoglutáricos/metabolismo , Ferro/metabolismo , Sideróforos/química , Citratos/metabolismo
5.
Gut Microbes ; 15(2): 2281016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982663

RESUMO

In many Vibrio species, virulence is regulated by quorum sensing, which is regulated by a complex, multichannel, two-component phosphorelay circuit. Through this circuit, sensor kinases transmit sensory information to the phosphotransferase LuxU via a phosphotransfer mechanism, which in turn transmits the signal to the response regulator LuxO. For Vibrio parahaemolyticus, type III secretion system 1 (T3SS1) is required for cytotoxicity, but it is unclear how quorum sensing regulates T3SS1 expression. Herein, we report that a hybrid histidine kinase, ArcB, instead of LuxU, and sensor kinase LuxQ and response regulator LuxO, collectively orchestrate T3SS1 expression in V. parahaemolyticus. Under high oxygen conditions, LuxQ can interact with ArcB directly and phosphorylates the Hpt domain of ArcB. The Hpt domain of ArcB phosphorylates the downstream response regulator LuxO instead of ArcA. LuxO then activates transcription of the T3SS1 gene cluster. Under hypoxic conditions, ArcB autophosphorylates and phosphorylates ArcA, whereas ArcA does not participate in regulating the expression of T3SS1. Our data provides evidence of an alternative regulatory path involving the quorum sensing phosphorelay and adds another layer of understanding about the environmental regulation of gene expression in V. parahaemolyticus.


Assuntos
Microbioma Gastrointestinal , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Percepção de Quorum/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/metabolismo , Fosfotransferases/genética , Regulação Bacteriana da Expressão Gênica
6.
Cell Rep ; 42(10): 113261, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37847589

RESUMO

Cyclic di-guanosine monophosphate (c-di-GMP) is a unique bacterial second messenger but is hijacked by host cells during bacterial infection as a pathogen-associated molecular pattern (PAMP) to trigger STING-dependent immune responses. Here, we show that upon infection, VopY, an effector of Vibrio parahaemolyticus, is injected into host cells by type III secretion system 2 (T3SS2), a secretion system unique to its pathogenic strains and indispensable for enterotoxicity. VopY is an EAL-domain-containing phosphodiesterase and is capable of hydrolyzing c-di-GMP. VopY expression in host cells prevents the activation of STING and STING-dependent downstream signaling triggered by c-di-GMP and, consequently, suppresses type I interferon immune responses. The presence of VopY in V. parahaemolyticus enables it to cause both T3SS2-dependent enterotoxicity and cytotoxicity. These findings uncover the destruction of self-derived PAMPs by injecting specific effectors to suppress PAMP-triggered immune responses as a unique strategy for bacterial pathogens to subvert immunity and cause disease.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/metabolismo , Virulência , Reconhecimento da Imunidade Inata , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/metabolismo
7.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511297

RESUMO

Galectins are proteins that play a crucial role in the innate immune response against pathogenic microorganisms. Previous studies have suggested that Galectin-3 could be a candidate gene for antibacterial immunity in the large yellow croaker Larimichthys crocea. In this study, we cloned the Galectin-3 gene in the large yellow croaker, and named it LcGal-3. The deduced amino acid sequence of LcGal-3 contains a carbohydrate recognition domain with two conserved ß-galactoside binding motifs. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that LcGal-3 was expressed in all the organs/tissues that were tested, with the highest expression level in the gill. In Larimichthys crocea kidney cell lines, LcGal-3 protein was distributed in both the cytoplasm and nucleus. Moreover, we found that the expression of LcGal-3 was significantly upregulated upon infection with Pseudomonas plecoglossicida, as demonstrated by qRT-PCR analyses. We also purified the LcGal-3 protein that was expressed in prokaryotes, and found that it has the ability to agglutinate large yellow croaker red blood cells in a Ca2+-independent manner. The agglutination activity of LcGal-3 was inhibited by lipopolysaccharides (LPS) in a concentration-dependent manner, as shown in the sugar inhibition test. Additionally, LcGal-3 exhibited agglutination and antibacterial activities against three Gram-negative bacteria, including P. plecoglossicida, Vibrio parahaemolyticus, and Vibrio harveyi. Furthermore, we studied the agglutination mechanism of the LcGal-3 protein using blood coagulation tests with LcGal-3 deletion and point mutation proteins. Our results indicate that LcGal-3 protein plays a critical role in the innate immunity of the large yellow croaker, providing a basis for further studies on the immune mechanism and disease-resistant breeding in L. crocea and other marine fish.


Assuntos
Doenças dos Peixes , Perciformes , Vibrio parahaemolyticus , Animais , Galectina 3/genética , Galectina 3/metabolismo , Sequência de Bases , Proteínas de Peixes/metabolismo , Vibrio parahaemolyticus/metabolismo , Galectinas/metabolismo , Perciformes/genética , Perciformes/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Filogenia , Imunidade Inata/genética
8.
Appl Environ Microbiol ; 89(6): e0047923, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37278653

RESUMO

Bacteria accumulate compatible solutes to maintain cellular turgor pressure when exposed to high salinity. In the marine halophile Vibrio parahaemolyticus, the compatible solute ectoine is biosynthesized de novo, which is energetically more costly than uptake; therefore, tight regulation is required. To uncover novel regulators of the ectoine biosynthesis ectABC-asp_ect operon, a DNA affinity pulldown of proteins interacting with the ectABC-asp_ect regulatory region was performed. Mass spectrometry analysis identified, among others, 3 regulators: LeuO, NhaR, and the nucleoid associated protein H-NS. In-frame non-polar deletions were made for each gene and PectA-gfp promoter reporter assays were performed in exponential and stationary phase cells. PectA-gfp expression was significantly repressed in the ΔleuO mutant and significantly induced in the ΔnhaR mutant compared to wild type, suggesting positive and negative regulation, respectively. In the Δhns mutant, PectA-gfp showed increased expression in exponential phase cells, but no change compared to wild type in stationary phase cells. To examine whether H-NS interacts with LeuO or NhaR at the ectoine regulatory region, double deletion mutants were created. In a ΔleuO/Δhns mutant, PectA-gfp showed reduced expression, but significantly more than ΔleuO, suggesting H-NS and LeuO interact to regulate ectoine expression. However, ΔnhaR/Δhns had no additional effect compared to ΔnhaR, suggesting NhaR regulation is independent of H-NS. To examine leuO regulation further, a PleuO-gfp reporter analysis was examined that showed significantly increased expression in the ΔleuO, Δhns, and ΔleuO/Δhns mutants compared to wild type, indicating both are repressors. Growth pattern analysis of the mutants in M9G 6%NaCl showed growth defects compared to wild type, indicating that these regulators play an important physiological role in salinity stress tolerance outside of regulating ectoine biosynthesis gene expression. IMPORTANCE Ectoine is a commercially used compatible solute that acts as a biomolecule stabilizer because of its additional role as a chemical chaperone. A better understanding of how the ectoine biosynthetic pathway is regulated in natural bacterial producers can be used to increase efficient industrial production. The de novo biosynthesis of ectoine is essential for bacteria to survive osmotic stress when exogenous compatible solutes are absent. This study identified LeuO as a positive regulator and NhaR as a negative regulator of ectoine biosynthesis and showed that, similar to enteric species, LeuO is an anti-silencer of H-NS. In addition, defects in growth in high salinity among all the mutants suggest that these regulators play a broader role in the osmotic stress response beyond ectoine biosynthesis regulation.


Assuntos
Diamino Aminoácidos , Vibrio parahaemolyticus , Fatores de Transcrição/genética , Vibrio parahaemolyticus/metabolismo , Regiões Promotoras Genéticas , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
PLoS Pathog ; 19(5): e1011330, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141203

RESUMO

Photorhabdus insect-related toxins A and B (PirA and PirB) were first recognized as insecticidal toxins from Photorhabdus luminescens. However, subsequent studies showed that their homologs from Vibrio parahaemolyticus also play critical roles in the pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimps. Based on the structural features of the PirA/PirB toxins, it was suggested that they might function in the same way as a Bacillus thuringiensis Cry pore-forming toxin. However, unlike Cry toxins, studies on the PirA/PirB toxins are still scarce, and their cytotoxic mechanism remains to be clarified. In this review, based on our studies of V. parahaemolyticus PirAvp/PirBvp, we summarize the current understanding of the gene locations, expression control, activation, and cytotoxic mechanism of this type of toxin. Given the important role these toxins play in aquatic disease and their potential use in pest control applications, we also suggest further topics for research. We hope the information presented here will be helpful for future PirA/PirB studies.


Assuntos
Toxinas Bacterianas , Penaeidae , Photorhabdus , Vibrio parahaemolyticus , Animais , Photorhabdus/metabolismo , Penaeidae/microbiologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Insetos/metabolismo , Vibrio parahaemolyticus/metabolismo
10.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175476

RESUMO

Leucine-rich repeat (LRR) is a structural motif has important recognition function in immune receptors, such as Tolls and NOD-like receptors (NLRs). The immune-related LRR proteins can be divided into two categories, LRR-containing proteins and LRR-only proteins. The latter contain LRR motifs while they are without other functional domains. However, the functional mechanisms of the LRR-only proteins were still unclear in invertebrates. Here, we identified a gene encoding a secretory LRR-only protein, which possessed similarity with vertebrate CD14 and was designated as LvCD14L, from the Pacific whiteleg shrimp Litopenaeus vannamei. Its transcripts in shrimp hemocytes were apparently responsive to the infection of Vibrio parahaemolyticus. Knockdown of LvCD14L with dsRNA resulted in significant increase of the viable bacteria in the hepatopancreas of shrimp upon V. parahaemolyticus infection. Further functional studies revealed that LvCD14L could bind to microorganisms' PAMPs, showed interaction with LvToll1 and LvToll2, and regulated the expression of LvDorsal and LvALF2 in hemocytes. These results suggest that LvCD14L functions as a pattern recognition receptor and activates the NF-κB pathway through interaction with LvTolls. The present study reveals a shrimp LvCD14L-Tolls-NF-κB signaling pathway like the CD14/TLR4/NF-κB signaling pathway in mammalians, which enriches the functional mechanism of secretory LRR-only immune receptors during pathogens infection in invertebrates.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , NF-kappa B/metabolismo , Proteínas de Artrópodes/genética , Transdução de Sinais , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Vibrio parahaemolyticus/metabolismo , Imunidade Inata/genética , Mamíferos/metabolismo
11.
Nucleic Acids Res ; 51(12): 6156-6171, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37158250

RESUMO

Pathogenic Vibrio species account for 3-5 million annual life-threatening human infections. Virulence is driven by bacterial hemolysin and toxin gene expression often positively regulated by the winged helix-turn-helix (wHTH) HlyU transcriptional regulator family and silenced by histone-like nucleoid structural protein (H-NS). In the case of Vibrio parahaemolyticus, HlyU is required for virulence gene expression associated with type 3 Secretion System-1 (T3SS1) although its mechanism of action is not understood. Here, we provide evidence for DNA cruciform attenuation mediated by HlyU binding to support concomitant virulence gene expression. Genetic and biochemical experiments revealed that upon HlyU mediated DNA cruciform attenuation, an intergenic cryptic promoter became accessible allowing for exsA mRNA expression and initiation of an ExsA autoactivation feedback loop at a separate ExsA-dependent promoter. Using a heterologous E. coli expression system, we reconstituted the dual promoter elements which revealed that HlyU binding and DNA cruciform attenuation were strictly required to initiate the ExsA autoactivation loop. The data indicate that HlyU acts to attenuate a transcriptional repressive DNA cruciform to support T3SS1 virulence gene expression and reveals a non-canonical extricating gene regulation mechanism in pathogenic Vibrio species.


Assuntos
Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Sistemas de Secreção Tipo III/genética , DNA Cruciforme/metabolismo , Virulência/genética , Escherichia coli/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
12.
Sci Rep ; 13(1): 4095, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36907954

RESUMO

Early Mortality Syndrome (EMS) has been a major problem for shrimp aquaculture in Southeast Asia due to its epizootic prevalence within the region since the first reported case in 2009. This study explores the application of halophilic marine bacilli isolated from coral mucus and their quorum-quenching abilities as potential biocontrol agents in aquaculture systems to combat the causative agent of EMS, Vibrio parahaemolyticus. N-acylhomoserine lactone (AHL)-degrading (AiiA) activity was first screened by PCR then confirmed by bio-reporter assay, and a combination of 16S rDNA sequence analysis and quantitative phenotype assays including biofilm-formation and temperature-growth responses were used to demonstrate diversity amongst these quorum-quenching isolates. Three phenotypically distinct strains showing notable potential were chosen to undergo co-cultivation as a method for strain improvement via long term exposure to the pathogenic V. parahaemolyticus. The novel approach taken led to significant improvements in antagonism and quorum quenching activities as compared to the ancestral wild-type strains and offers a potential solution as well as pathway to improve existing beneficial microbes for one of the most pressing issues in shrimp aquacultures worldwide.


Assuntos
Bacillus , Decápodes , Lacticaseibacillus casei , Vibrio parahaemolyticus , Animais , Percepção de Quorum/genética , Bacillus/metabolismo , Vibrio parahaemolyticus/metabolismo , Acil-Butirolactonas/metabolismo , Decápodes/metabolismo , Crustáceos/metabolismo
13.
J Immunol ; 210(9): 1324-1337, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883975

RESUMO

ß-Defensins are a family of cysteine-rich antimicrobial peptides that are generally monodomain. Interestingly, the avian ß-defensin 11 (AvBD11) is unique, with two ß-defensin motifs with a broad range of antimicrobial activities. However, a double-sized ß-defensin has not been identified and functionally characterized in invertebrates. In this study, we cloned and identified a double-ß-defensin in shrimp Litopenaeus vannamei (named LvDBD) and explored its potential roles during infection with shrimp pathogens Vibrio parahaemolyticus and white spot syndrome virus (WSSV). LvDBD is an atypical double-sized defensin, which is predicted to possess two motifs related to ß-defensin and six disulfide bridges. The RNA interference-mediated knockdown of LvDBD in vivo results in phenotypes with increased bacterial loads, rendering the shrimp more susceptible to V. parahaemolyticus infection, which could be rescued by the injection of recombinant LvDBD protein. In vitro, rLvDBD could destroy bacterial membranes and enhance hemocyte phagocytosis, possibly attributable to its affinity to the bacterial wall components LPS and peptidoglycan. In addition, LvDBD could interact with several viral envelope proteins to inhibit WSSV proliferation. Finally, the NF-κB transcription factors (Dorsal and Relish) participated in the regulation of LvDBD expression. Taken together, these results extend the functional understanding of a double-ß-defensin to an invertebrate and suggest that LvDBD may be an alternative agent for the prevention and treatment of diseases caused by V. parahaemolyticus and WSSV in shrimp.


Assuntos
Anti-Infecciosos , Penaeidae , Vibrio parahaemolyticus , Vírus da Síndrome da Mancha Branca 1 , beta-Defensinas , Animais , beta-Defensinas/genética , Invertebrados , Vibrio parahaemolyticus/metabolismo , Interferência de RNA , Penaeidae/microbiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/farmacologia , Proteínas de Artrópodes/metabolismo
14.
J Proteomics ; 279: 104866, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918054

RESUMO

Vibrio parahaemolyticus, a sea-born bacterial pathogen, is a primary inducement of food-borne gastroenteritis. Previous studies have shown that non-coding small RNA plays a vital role in the regulation of multiple biological processes in pathogenic bacteria, especially autoaggregation and growth competition. However, the inherent mechanisms have not yet to be fully understood. As important regulators in Vibrios, the involvement of Qrr sRNAs in V. parahaemolyticus is largely unknown. Here, we carried out the Qrr5 deletion mutant and utilized a proteomic method to describe global proteomic alterations in response to Qrr5 deletion. A total of 297 significantly expressed proteins were determined between the Qrr5 deletion mutant and wild-type strain, among which 137 proteins were upregulated and 160 proteins were downregulated. The upregulated proteins principally participated in membrane transporters and signal transcription, while the downregulated proteins participated in the two-component system and transcription factor binding. Notably, transcriptional regulator LysR, outer membrane protein OmpA, and conjugal transfer protein TraA-related proteins were upregulated, causing the promotion of autoaggregation ability and growth competition ability against E. coli. This study provides insights into the regulatory network of sRNA in this bacterium, which will facilitate further explorations of important biological processes in pathogenic bacteria. SIGNIFICANCE: sRNA Qrr5 is an important regulator involved in bacterial multiple physiological processes, including auto-aggregation and growth competition among food-borne pathogens Vibrio parahaemolyticus. Here, utilizing a TMT-labeling proteomic approach, we identified 137 proteins were upregulated and 160 proteins were downregulated between the Qrr5 deletion mutant and wild-type strain. The upregulated proteins were involved in membrane transporters and signal transcription, while downregulated proteins were involved in the two-component system and transcription factor binding. Moreover, the LysR, OmpA, and TraA proteins were significantly upregulated, causing the promotion of autoaggregation and commensal growth competition ability. The mechanism of how Qrr5 regulates the targeted genes remains unclarified and need great efforts to explore.


Assuntos
Fenômenos Biológicos , Pequeno RNA não Traduzido , Vibrio parahaemolyticus , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Escherichia coli/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pequeno RNA não Traduzido/metabolismo
15.
Gut Microbes ; 15(1): 2178795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803660

RESUMO

All strains of the marine bacterium Vibrio parahaemolyticus harbor a type VI secretion system (T6SS) named T6SS2, suggesting that this system plays an important role in the life cycle of this emerging pathogen. Although T6SS2 was recently shown to play a role in interbacterial competition, its effector repertoire remains unknown. Here, we employed proteomics to investigate the T6SS2 secretome of two V. parahaemolyticus strains, and we identified several antibacterial effectors encoded outside of the main T6SS2 gene cluster. We revealed two T6SS2-secreted proteins that are conserved in this species, indicating that they belong to the core secretome of T6SS2; other identified effectors are found only in subsets of strains, suggesting that they comprise an accessory effector arsenal of T6SS2. Remarkably, a conserved Rhs repeat-containing effector serves as a quality control checkpoint and is required for T6SS2 activity. Our results reveal effector repertoires of a conserved T6SS, including effectors that have no known activity and that have not been previously associated with T6SSs.


Assuntos
Microbioma Gastrointestinal , Sistemas de Secreção Tipo VI , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos
16.
Mar Drugs ; 21(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36827171

RESUMO

Crustins are a kind of antimicrobial peptide (AMP) that exist in crustaceans. Some crustins do not have direct antimicrobial activity but exhibit in vivo defense functions against Vibrio. However, the underlying molecular mechanism is not clear. Here, the regulatory mechanism was partially revealed along with the characterization of the immune function of a type I crustin, LvCrustin I-2, from Litopenaeus vannamei. LvCrustin I-2 was mainly detected in hemocytes, intestines and gills and was apparently up-regulated after Vibrio parahaemolyticus infection. Although the recombinant LvCrustin I-2 protein possessed neither antibacterial activity nor agglutinating activity, the knockdown of LvCrustin I-2 accelerated the in vivo proliferation of V. parahaemolyticus. Microbiome analysis showed that the balance of intestinal microbiota was impaired after LvCrustin I-2 knockdown. Further transcriptome analysis showed that the intestinal epithelial barrier and immune function were impaired in shrimp after LvCrustin I-2 knockdown. After removing the intestinal bacteria via antibiotic treatment, the phenomenon of impaired intestinal epithelial barrier and immune function disappeared in shrimp after LvCrustin I-2 knockdown. This indicated that the impairment of the shrimp intestine after LvCrustin I-2 knockdown was caused by the dysbiosis of the intestinal microbiota. The present data suggest that crustins could resist pathogen infection through regulating the intestinal microbiota balance, which provides new insights into the functional mechanisms of antimicrobial peptides during pathogen infection.


Assuntos
Penaeidae , Vibrioses , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/metabolismo , Imunidade Inata , Proteínas de Artrópodes/metabolismo , Intestinos , Penaeidae/metabolismo
17.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768942

RESUMO

Vibrio parahaemolyticus is a moderately halophilic foodborne pathogen that is mainly distributed in marine and freshwater environments. The transition of V. parahaemolyticus between aquatic ecosystems and hosts is essential for infection. Both freshwater and host environments have low salinity. In this study, we sought to further investigate the effects of low salinity (0.5% NaCl) on the fitness and virulence of V. parahaemolyticus. We found that V. parahaemolyticus could survive in Luria-Bertani (LB) and M9 mediums with different NaCl concentrations, except for the M9 medium containing 9% NaCl. Our results further showed that V. parahaemolyticus cultured in M9 medium with 0.5% NaCl had a higher cell density than that cultured at other NaCl concentrations when it entered the stationary phase. Therefore, we compared the transcriptomes of V. parahaemolyticus wild type (WT) cultured in an M9 medium with 0.5% and 3% NaCl at the stationary phase using RNA-seq. A total of 658 genes were significantly differentially expressed in the M9 medium with 0.5% NaCl, including regulators, osmotic adaptive responses (compatible solute synthesis systems, transporters, and outer membrane proteins), and virulence factors (T3SS1 and T6SS1). Furthermore, a low salinity concentration in the M9 medium induced the expression of T3SS1 to mediate the cytotoxicity of V. parahaemolyticus to HeLa cells. Similarly, low salinity could also induce the secretion of the T3SS2 translocon protein VPA1361. These factors may result in the high pathogenicity of V. parahaemolyticus in low-salinity environments. Taken together, these results suggest that low salinity (0.5% NaCl) could affect gene expression to mediate fitness and virulence, which may contribute to the transition of V. parahaemolyticus between aquatic ecosystems and the host.


Assuntos
Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Células HeLa , Pressão Osmótica , Ecossistema , Perfilação da Expressão Gênica , Proteínas de Bactérias/metabolismo
18.
Appl Environ Microbiol ; 89(1): e0187422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602323

RESUMO

Cyclic AMP (cAMP) receptor protein (CRP), encoded by crp, is a global regulator that is activated by cAMP, a second messenger synthesized by a class I adenylate cyclase (AC-I) encoded by cyaA in Escherichia coli. cAMP-CRP is required for growth on nonpreferred carbon sources and is a global regulator. We constructed in-frame nonpolar deletions of the crp and cyaA homologs in Vibrio parahaemolyticus and found that the Δcrp mutant did not grow in minimal media supplemented with nonpreferred carbon sources, but the ΔcyaA mutant grew similarly to the wild type. Bioinformatics analysis of the V. parahaemolyticus genome identified a 181-amino-acid protein annotated as a class IV adenylate cyclase (AC-IV) named CyaB, a member of the CYTH protein superfamily. AC-IV phylogeny showed that CyaB was present in Gammaproteobacteria and Alphaproteobacteria as well as Planctomycetes and Archaea. Only the bacterial CyaB proteins contained an N-terminal motif, HFxxxxExExK, indicative of adenylyl cyclase activity. Both V. parahaemolyticus cyaA and cyaB genes functionally complemented an E. coli ΔcyaA mutant. The Δcrp and ΔcyaB ΔcyaA mutants showed defects in growth on nonpreferred carbon sources and in swimming and swarming motility, indicating that cAMP-CRP is an activator. The ΔcyaA and ΔcyaB single mutants had no defects in these phenotypes, indicating that AC-IV complements AC-I. Capsule polysaccharide and biofilm production assays showed significant defects in the Δcrp, ΔcyaBΔcyaA, and ΔcyaB mutants, whereas the ΔcyaA strain behaved similarly to the wild type. This is consistent with a role of cAMP-CRP as an activator of these phenotypes and establishes a cellular role for AC-IV in capsule and biofilm formation, which to date has been unestablished. IMPORTANCE Here, we characterized the roles of CRP and CyaA in V. parahaemolyticus, showing that cAMP-CRP is an activator of metabolism, motility, capsule production, and biofilm formation. These results are in contrast to cAMP-CRP in V. cholerae, which represses capsule and biofilm formation. Previously, only an AC-I CyaA had been identified in Vibrio species. Our data showed that an AC-IV CyaB homolog is present in V. parahaemolyticus and is required for optimal growth. The data demonstrated that CyaB is essential for capsule production and biofilm formation, uncovering a physiological role of AC-IV in bacteria. The data showed that the cyaB gene was widespread among Vibrionaceae species and several other Gammaproteobacteria, but in general, its phylogenetic distribution was limited. Our phylogenetic analysis also demonstrated that in some species the cyaB gene was acquired by horizontal gene transfer.


Assuntos
Adenilil Ciclases , Vibrio parahaemolyticus , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , AMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Biofilmes , Polissacarídeos
19.
Gene ; 851: 146980, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36261093

RESUMO

Vibrio parahaemolyticus, a seafood-borne pathogen, is capable of forming biofilms on surfaces. Exopolysaccharide (EPS) plays crucial roles in holding bacterial cells together and keeping biofilm attached on the surface. The cpsA-K and scvA-O gene clusters are responsible for EPS synthesis in V. parahaemolyticus. AphA, the master quorum sensing (QS) regulator operating at low cell density (LCD), positively regulates transcription of cpsA-K and scvA-O, but lacks the detailed mechanisms. The present data showed that the aphA mutant produced smooth colonies, whereas the wild-type strain produced wrinkled colonies. AphA bound the regulatory DNA region of scvE to activate its transcription, whereas it positively regulated transcription of cpsA and scvA in an indirect manner. The transcriptional level of scvE gradually decreased with increasing cell density, which correlated with the expression level of aphA. Taken together, this work elucidated how AphA regulated the biofilm-associated colony morphology variation in V. parahaemolyticus through its regulatory actions on the expression of EPS genes.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Percepção de Quorum/genética , Biofilmes , Polissacarídeos/genética , Polissacarídeos/metabolismo
20.
Microb Pathog ; 174: 105947, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521654

RESUMO

Vibrio parahaemolyticus produces dual flagellar systems, i.e., the sheathed polar flagellum (Pof) and numerous lateral flagella (Laf), both of which are strictly regulated by numerous factors. QsvR is an AraC-type regulator that controls biofilm formation and virulence of V. parahaemolyticus. In the present study, we showed that deletion of qsvR significantly enhanced swimming motility of V. parahaemolyticus, while the swarming motility was not affected by QsvR. QsvR bound to the regulatory DNA regions of flgAMN and flgMN within the Pof gene loci to repress their transcription, whereas it negatively controls the transcription of flgBCDEFGHIJ and flgKL-flaC in an indirect manner. However, over-produced QsvR was also likely to possess the binding activity to the regulatory DNA regions of flgBCDEFGHIJ and flgKL-flaC in a heterologous host. In summary, this work demonstrated that QsvR negatively regulated the swimming motility of V. parahaemolyticus via directly action on the transcription of Pof genes.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Flagelos/genética , Flagelos/metabolismo , Genes Bacterianos , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...